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Abstract

Adversarial representation learning aims to learn data
representations for a target task while removing unwanted
sensitive information at the same time. Existing methods
learn model parameters iteratively through stochastic gra-
dient descent-ascent which is often unstable in practice. To
overcome this challenge, we adopt closed-form solvers for
the adversary and target predictors by modeling them as
kernel ridge regressors, resulting in a more stable one-shot
optimization, dubbed OptNet-ARL. Numerical experiment
on CelebA dataset demonstrates the utility of our approach
for mitigating leakage of private information from learned
representation.

1. Introduction
Adversarial Representation Learning (ARL) is a promis-

ing framework that affords explicit control over unwanted
information in learned data representations. The basic idea
of ARL [16] is to introduce a proxy adversary and limit its
ability to extract sensitive information during training. The
adversary acts as a proxy for the inductive biases necessary
for controlling unwanted information in the representation.
Such an approach has practically been employed in various
applications, such as, learning unbiased and fair representa-
tions [11], learning controllable representations invariant to
sensitive attributes [16], mitigating leakage of sensitive infor-
mation [12, 13], unsupervised domain adaption [3], learning
flexibly fair representation [15] etc.

The ARL framework is a three-player minimax game
between an encoder E, a predictor T , and an adversary A,
as illustrated in Figure 1.Target predictor T seeks to extract
target information and make correct prediction on target
task; Adversary A seeks to extract sensitive information
from learned representation; Encoder E seeks to learn a data
representation that aids the target predictor and hinders the
adversary at the same time. In most ARL settings, while the
encoder is a deep neural network, the target predictor and
adversary are typically shallow neural networks, all of which
are difficult to optimize simultaneously.
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Figure 1: Adversarial Representation Learning consists
of three players, an encoder E that obtains a compact rep-
resentation z of input data x, predictors T and S that seek
to extract a desired target y and sensitive s attribute, respec-
tively from the embedding.

In such problems the solution of interest is the Nash equi-
librium rather than the local minima of each objective. Un-
fortunately, finding the Nash equilibrium for general games
where the players are modeled as neural networks is an in-
tractable problem [1]. The vanilla algorithm for learning the
parameters of the encoder, target and adversary networks
is gradient descent-ascent (GDA) [12, 16], where the play-
ers take a gradient step simultaneously. However, apply-
ing gradient descent, including its stochastic version, is not
an optimal strategy for ARL and is known to suffer from
many drawbacks. Firstly, GDA has undesirable convergence
properties; it fails to converge to a local minimax and can
converge to fixed points that are not local minimax, while
being very unstable and slow in practice [7]. Secondly, GDA
exhibits strong rotation around fixed points, which requires
using very small learning rates [1] to converge. Numer-
ous solutions have been proposed recently to address the
aforementioned challenges and improve the optimization
dynamics of multi-player games. These approaches, how-
ever, seek to obtain solutions to the minimax optimization
problem in the general case, where each player is modeled
as a complex neural network.

In this paper we take a different perspective and pro-
pose an alternative solution for adversarial representation
learning. Our key insight is to replace the shallow neural
networks with other analytically tractable models with simi-
lar or higher capacity. We propose to adopt simple learning
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algorithms that admit closed-form solutions, such as lin-
ear or kernel ridge regression for the target and adversary,
while modeling the encoder as a deep neural network. Note
that, universal kernels (e.g., Gaussian) can potentially be
of infinite capacity. Crucially, such models are particularly
suitable for ARL and afford numerous advantages, including,
(1) closed-form solution allows learning problems to be opti-
mized globally and efficiently, (2) the simplicity and differ-
entiability allows us to backpropagate through the learning
process, (3) practically it resolves the notorious rotational
behaviour of iterative minimax gradient dynamics, resulting
in an optimization that is empirically stable, reliable, and
more effective while also converging faster. We refer to our
proposed algorithm as OptNet-ARL.

Notation: Scalars are denoted by regular lower case or
Greek letters, e.g., n, λ. Vectors are boldface lowercase
letters, e.g., x, y; Matrices are uppercase boldface letters,
e.g., X. The pseudo inverse of X is denoted by X†. A n×n
identity matrix is denoted by I, sometimes with a subscript
indicating its size, e.g., In. Centered (mean subtracted w.r.t
columns) data matrix is indicated by "~", e.g., X̃. Assume
that X contains n columns, then X̃ = XD where D =
In − 1

n11T and 1 denotes a vector of ones with length of n.
Given matrix M ∈ Rm×m, we use Tr[M] to denote its trace;
its Frobenius norm is denoted by ‖M‖F , which is related
to the trace as ‖M‖2F = Tr[MMT ]. The subspace spanned
by the columns of M is denoted byR(M) or simplyM (in
calligraphy). The orthogonal complement ofM is denoted
byM⊥ and the orthogonal projectors ontoM andM⊥ are
denoted by PM and PM⊥ , respectively.

2. Problem Setting
Let the data matrix X = [x1, . . . ,xn] ∈ Rd×n be n re-

alizations of d-dimensional data, x ∈ Rd. Similarly, we
denote n realizations of sensitive attribute vector s ∈ Rq and
target attribute vector y ∈ Rp by matrices S = [s1, · · · , sn]
and Y = [y1, · · · ,yn], respectively. Treating the attributes
as vectors enables us to consider both multi-class classifica-
tion and regression under the same formulation. Each data
sample xk is associated with the sensitive attribute sk and
the target attribute yk, respectively.

The ARL problem is formulated with the goal of learning
parameters of an embedding function E(·;ΘE) that maps a
data sample x to z ∈ Rr with two objectives: (i) aiding a tar-
get predictor T (·;Θy) to accurately infer the target attribute
y from z, and (ii) preventing an adversary A(·;Θs) from
inferring the sensitive attribute s from z. The ARL problem
can be formulated as a bi-level optimization,

min
ΘE

min
Θy

Ly (T (E(x;ΘE);Θy),y)

s.t. min
Θs

Ls (A(E(x;ΘE);Θs), s) ≥ α
(1)

where Ly and Ls are the loss functions (averaged over the

training dataset) for the target predictor and the adversary,
respectively; α ∈ [0,∞) is a user defined value that deter-
mines the minimum tolerable loss α for the adversary on the
sensitive attribute; and the minimization in the constraint is
equivalent to the encoder operating against an optimal adver-
sary. Existing instances of this problem adopt deep neural
networks to represent E, T and A and learn their respec-
tive parameters {ΘE ,Θy,Θs} through stochastic gradient
descent-ascent (SGDA).

Modeling the target predictor and adversary by exact
solvers would enable us to learn a better embedding function.
The machine learning literature offers a wealth of methods
with exact solutions that are appropriate for modeling both
the adversary and target predictors. In this paper, we argue
for and adopt simple, fast and differentiable methods such
as kernel ridge regressors. On one hand, such modeling
allows us to obtain the optimal estimators globally for any
given encoderE(·;ΘE). On the other hand, kernelized ridge
regressors can be stronger than the shallow neural networks
that are used in many ARL-based solutions (e.g., [11,12,16]).

Denote the global minimums of the adversary and target
estimators as,

Jy(ΘE) := min
Θy

Ly (T (E(x;ΘE);Θy),y)

Js(ΘE) := min
Θs

Ls (A(E(x;ΘE);Θs), s) . (2)

The constrained optimization problem in (1) can be alter-
nately solved through its Lagrangian version:

min
ΘE

{
(1− λ)Jy(ΘE)− λJs(ΘE)

}
, 0 ≤ λ ≤ 1 (3)

2.1. Closed-Form Adversary and Target Predictor

Consider two reproducing kernel Hilbert spaces (RKHS)
Hs and Hy of functions from Rr to R for adversary and
target regressors, respectively. Let a possible correspond-
ing pair of feature maps be φs(·) ∈ Rrs and φy(·) ∈ Rry

where rs and ry are the dimensionality of the resulting fea-
tures and can potentially approach infinity. The respective
kernels for Hs and Hy can be represented as ks(z1, z2) =
〈φs(z1), φs(z2)〉Hs and ky(z1, z2) = 〈φy(z1), φy(z2)〉Hy .
Under this setting (see Fig. 2 for an illustration), we can re-
late the target and sensitive attributes to any given embedding
z as,

ŷ = Wyφy(z) + by, ŝ = Wsφs(z) + bs (4)

where Θy = {Wy,by} and Θs = {Ws,bs} are the regres-
sion parameters, Wy ∈ Rp×ry and Ws ∈ Rq×rs , by ∈ Rp

and bs ∈ Rq respectively.
Let the embeddings of all the data be denoted as Z :=

[z1, · · · , zn] and the corresponding features maps as Φy :=
[φy(z1), · · · , φy(zn)] and Φs := [φs(z1), · · · , φs(zn)], re-
spectively. Furthermore, we denote the associated Gram
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Figure 2: OptNet-ARL consists of an encoder E modeled
as a deep neural network to obtain a compact representation
z of input data x and kernelized ridge regressors T and A
to predict the target y and sensitive attributes s, respectively
from the embedding z.

matrices by Ky = Φy
TΦy and Ks = Φs

TΦs. A centered
(i.e., mean subtracted) kernel matrix K̃ corresponding to the
kernel matrix K can be obtained [6] as,

K̃ = Φ̃T Φ̃ = (ΦD)T (ΦD) = DTKD. (5)

From the representer theorem [14], the regression parameters
can be decomposed as Wy = ΛyΦ̃

T
y and Ws = ΛsΦ̃

T
s for

target and adversary respectively, where Λy ∈ Rp×n and
Λs ∈ Rn×q are free parameters matrices. As a result, the
kernelized regressors in (4) would be equivalent to

ŷ = ΛyΦ̃
T
y φy(z) + by, ŝ = ΛsΦ̃

T
s φs(z) + bs (6)

Let Jy(Z) and Js(Z) be regularized minimum MSEs for
adversary and target:

Jy(ΘE) = min
Λy,by

{
E
{∥∥ŷ − y

∥∥2}+ γy
∥∥Λy

∥∥2
F

}
Js(ΘE) = min

Λs,bs

{
E
{∥∥ŝ− s

∥∥2}+ γs
∥∥Λs

∥∥2
F

}
where γy and γs are regularization parameters for target
and adversary regressors, respectively. Then, for any given
embedding matrix Z, the minimum MSE for kernelized
adversary and target can be obtained as

Jy(ΘE) =
1

n

∥∥Ỹ∥∥2
F
− 1

n

∥∥∥∥PMy

[
ỸT

0n

] ∥∥∥∥2
F

Js(ΘE) =
1

n

∥∥S̃∥∥2
F
− 1

n

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥2
F

(7)

where

My =

[
K̃y√
nγyIn

]
, Ms =

[
K̃s√
nγsIn

]
are both full column rank matrices and a projection matrix
for any full column rank matrix M is

PM = M(MTM)−1MT
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Figure 3: CelebA: (a) Target MSE versus adversary MSE for
different values of λ and five different weight initialization
of encoder networks for SGDA-ARL, ExtraSDGA-ARL and
OptNet-ARL. (b) Non-dominant trade-off between target and
adversary accuracy for different values of λ for all methods.

3. Closed-Form Solver Gradient
In order to find the gradient of loss function in (3) with Jy

and Js given in (7), we ignore the constant terms, ‖Ỹ‖F and
‖S̃‖F for which Ỹ and S̃ are the mean subtracted versions
of Y and S, respectively. Then, the optimization problem
in (3) would be equivalent to

min
ΘE

{
(1− λ)

∥∥∥∥PMs

[
S̃T

0n

] ∥∥∥∥2
F

− λ
∥∥∥∥PMy

[
ỸT

0n

] ∥∥∥∥2
F

}

= min
ΘE

{
(1− λ)

p∑
k=1

‖PMs
uk
s‖2 − λ

q∑
m=1

‖PMy
um
y ‖2

}
(8)

where the vectors uk
s and um

y are the k-th and m-th columns

of
[
S̃T

0n

]
and

[
ỸT

0n

]
, respectively. Let M is an arbitrary

matrix function of ΘE and θ be arbitrary element of ΘE .
Then, from [5] we have

1

2

∂‖PMu‖2

∂θ
= uTPM⊥

∂M

∂θ
M†u (9)

where[∂M
∂θ

]
ij

=

{
∇Tzi

(
[M]ij

)
∇θ(zi) +∇Tzj

(
[M]ij

)
∇θ(zj), i ≤ n

0, else.

Note that, the above equation can be directly used to obtain
the gradient of objective function in (8).

4. Experiment on CelebA
The CelebA dataset [10] contains 202, 599 face images of

10, 177 celebrities. Each image contains 40 different binary
attributes (e.g., gender, emotion, age, etc.). Images are pre-
processed and aligned to a fixed size of 112 × 96 and we
use the official train and test splits. The target task is defined
as predicting the presence or absence of high cheekbones
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(binary) with the sensitive attribute being smiling/not smiling
(binary). We adopt ResNet-18 as the encoder for all methods.
In the training stage, the encoder is optimized against kernel
ridge regressors in the case of OptNet-ARL and two-layer
perceptrons for the baselines as adversary and target. At the
inference stage, the encoder is frozen, features are extracted
and a new target predictor and adversary are trained. At this
stage, for both OptNet-ARL and the baselines, the target and
adversary have the same model capacity and optimize the
cross-entropy loss for classification. Each experiment on
each dataset is repeated five times (different random seeds)
and for different trade-off parameters λ ∈ [0, 1].

We consider two baselines, (1) SGDA-ARL: vanilla
stochastic gradient descent-ascent that is employed by multi-
ple ARL approaches including [2, 8, 11, 12, 16] etc., and (2)
ExtraSGDA-ARL: a state-of-the-art variant of stochastic
gradient descent-ascent that uses an extra gradient step [9]
for optimizing minimax games. Specifically, we use the
ExtraAdam algorithm from [4].
Stability: Figure 3 shows experimental results. Observe that
the baseline solutions span a large part of the trade-off, but
at the same time exhibit large instability and unreliability
in the solutions. On the other hand, OptNet-ARL (Figure 3
(a)) solutions are very stable while also spanning a more
diverse set of solutions on the trade-off front. Finally, Fig. 3
(b) shows the non-dominated trade-off between target and
adversary accuracy. OptNet-ARL achieves a significantly
better and more diverse trade-off than the baselines.
Scalability: Instead of kernelizing the entire dataset, we ap-
proximate it by kernelizing each batch separately to calculate
the loss function and backpropagate.

5. Conclusion

Adversarial representation learning is a minimax game
theoretic formulation that affords explicit control over un-
wanted information in learned data representations. Opti-
mization algorithms for ARL such as stochastic gradient
descent-ascent (SGDA) and their variants are sub-optimal,
unstable and unreliable in practice. In this paper, we intro-
duced OptNet-ARL to address this challenge by employ-
ing differentiable closed-form solvers, such as kernelized
ridge regressors, to model the ARL players that are down-
stream from the representation. OptNet-ARL reduces iter-
ative SGDA to a one-shot optimization, leading to a fast,
stable and reliable algorithm that out-performs all existing
ARL approaches on CelebA dataset.
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