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Abstract

We present a novel, end-to-end learnable, multiview 3D
point cloud registration algorithm. Registration of multiple
scans typically follows a two-stage pipeline: the initial pair-
wise alignment and the globally consistent refinement. The
former is often ambiguous due to the low overlap of neigh-
boring point clouds, symmetries and repetitive scene parts.
Therefore, the latter global refinement aims at establishing
the cyclic consistency across multiple scans and helps in re-
solving the ambiguous cases. In this paper we propose the
first end-to-end algorithm for joint learning of both parts of
this two-stage problem. Experimental evaluation on bench-
mark datasets shows that our approach outperforms state-
of-the-art by a significant margin, while being end-to-end
trainable and computationally less costly. A more detailed
description of the method, further analysis, and ablation
studies are provided in the original CVPR 2020 paper [11].

1. Introduction

The capability of aligning and fusing multiple scans is
essential for the tasks of structure from motion and 3D re-
construction. As such, it has several use cases in augmented
reality and robotics. While for pairwise registration well ac-
cepted methods do exist [23, 9, 12, 7, 10], registering multi-
ple scans globally remains a challenge, because i) the global
registration methods are typically dependent on a good pair-
wise initialization, and ii) it is unclear how to best make use
of the quadratic pairwise relationships. Most methods for
global alignment of multiview data aim at synchronizing
the pairwise transformation parameters with good initial-
izations [14, 19, 3, 2, 6], or incorporate pairwise keypoint
correspondences in a joint optimization [23, 20, 4]. In gen-
eral, these methods work well on data with low synthetic
noise, but struggle on real scenes with high levels of clutter
and occlusion [5]. A general drawback of this hierarchi-
cal procedure is that the global noise distribution over all
nodes in the pose graph ends up being far from random, i.e.
significant biases persist due to the highly correlated initial
pairwise alignments.
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Figure 1. Result of our end-to-end reconstruction on the 60 scans
of Kitchen scene from 3DMatch benchmark [21].

Contributions The main contributions of our work are:

1. We reformulate the traditional two-stage approach as an
end-to-end differentiable, declarative neural network that
solves two differentiable optimization problems during
the forward pass: (i) the Procrustes problem for the esti-
mation of the pairwise transformations and (ii) the spec-
tral relaxation of the transformation synchronization.

2. We propose a confidence estimation block that uses a
novel overlap pooling layer to predict the confidence in
the estimated pairwise transformation parameters.

3. We formulate the registration of multiple 3D point clouds
as an IRLS problem and iteratively refine both the pair-
wise and absolute transformation estimates.

4. We integrate all these into, to the best of our knowledge,
the first end-to-end data driven multiview point cloud
registration algorithm.

Resulting from the aforementioned contributions, the pro-
posed multiview registration algorithm (i) is very efficient
to compute, (ii) achieves more accurate scan alignments be-
cause the residuals are being fed back to the pairwise net-
work in an iterative manner, (iii) outperforms current state-
of-the art on pairwise point cloud registration as well as
transformation synchronization.

2. End-to-End Multiview 3D Registration
Consider a set of potentially overlapping point clouds

S = {Si ∈ RN×3, 1 ≤ i ≤ NS} capturing a 3D scene
from different viewpoints (i.e. poses). The task of mul-
tiview registration is to recover the rigid, absolute poses
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Figure 2. Proposed pipeline for end-to-end multiview 3D point cloud registration.

{M∗
i ∈ SE(3)}i given the scan collection, where

SE(3) =

{
M ∈ R4×4 : M =

[
R t
0> 1

]}
. (1)

Ri ∈ SO(3) and ti ∈ R3. S can be augmented by con-
nectivity information resulting in a finite graph G = (S, E),
where each vertex represents a single point set and the edges
(i, j) ∈ E encode the information about the relative rotation
Rij and translation tij between the vertices.

Our end-to-end multiview 3D registration approach con-
sists of three modules: i) learned correspondence module,
ii) pairwise registration module, and iii) iterative transfor-
mation synchronization module. For each of the input point
clouds Si we extract FCGF [7] features that are fed into
the softNN layer to compute the stochastic correspondences
for
(
NS
2

)
pairs. These correspondences are used as input to

the two registration blocks (Reg. init. and Reg. iter.), whose
outputs are used to build the graph. After each iteration of
Transf-Sync layer that solves the spectral relaxation of the
transformation synchronization problem [2], the estimated
transformation parameters are used to pre-align the corre-
spondences that are concatenated with the weights from
the previous iteration and the residuals and feed anew to
Reg. iter. block.

SoftNN layer In order to establish the pointwise corre-
spondences a nearest neighbor (NN) search in the FCGF
feature space has to be carried out. However, the selec-
tion rule of such hard assignments is not differentiable. We
therefore relax the NN-assignment in a probabilistic manner
by computing a probability (weight) vector s of the categor-
ical distribution [17], which is used to hallucinate the cor-
responding points as a weighted average of the coordinates.
These soft correspondences enable the flow of the gradients
to the initial layers during training.

Differentiable pairwise registration The pairwise regis-
tration block is formulated as an IRLS problem for which
the per-correspondence weights are obtained by combining
the 3D outlier filtering network [13] with the order-aware
blocks proposed in [22]. Specifically, our initial pairwise
registration block (Reg. init.) takes the coordinates of the

putative correspondences as input and outputs weights, in-
dicating if the established putative correspondence is an out-
lier or an inlier. The inferred weights together with the co-
ordinates of the putative correspondences are then fed into
the weighted Procrustes problem

R̂ij , t̂ij = argmin
Rij ,tij

N∑
l=1

wl||Rijpl + tij − ql)||2. (2)

Differentiable closed-form solution based on the Kabsch al-
gorithm is then defined as follows:

p :=

N∑
l=1

wlpl/|w|1, q :=

N∑
l=1

wlql/|w|1 (3)

where p and q denote the weighted centroids of point
clouds Pi ∈ RN×3 and Qj ∈ RN×3, where Pi ∼ Qj

are under correspondence, respectively. The centered point
coordinates can then be computed as p̃l := pl−p, q̃l :=
ql − q, l = 1, . . . , N . Arranging the centered points
back to the matrix forms P̃ ∈ RN×3 and Q̃ ∈ RN×3, a
weighted covariance matrix S ∈ R3×3 can be computed as
S = P̃TWQ̃, where W = diag(w1, . . . , wN ). The solu-
tion to the registration problem in Eq. 2 is then given by
the projection of S onto the SO(3) manifold as: R̂ij =
V · diag([1, 1, det(VUT )]) ·UT where S = UΣVT is the
singular value decomposition of S. det(·) denotes comput-
ing the determinant and is used here to avoid creating a re-
flection matrix. Finally, t̂ij is computed as t̂ij = q−R̂ijp.
Motivated by the results in [18, 22] we add another regis-
tration block (i. e. Reg. iter.) to our network. This block is
identical to Reg. init. except the fact that it uses the weights
as well as the pointwise residuals along with the original
input to further refine the registration result.
Confidence estimation The unknown overlap ratio be-
tween point clouds makes it difficult to i) determine the
quality of the estimated relative pose parameters, ii) build
the graph connections between point clouds for the trans-
formation synchronization. Hence, we introduce the con-
fidence estimation network whose output cij indicates the
confidence in the estimated pairwise transformations M̂ij .



Methods Rotation Error Translation Error (m)
3◦ 5◦ 10◦ 30◦ 45◦ Mean/Med. 0.05 0.1 0.25 0.5 0.75 Mean/Med.

Pairwise
(All)

FGR [23] 9.9 16.8 23.5 31.9 38.4 76.3◦/- 5.5 13.3 22.0 29.0 36.3 1.67/-
Ours (1st iter.) 32.6 37.2 41.0 46.5 49.4 65.9◦/48.8◦ 25.1 34.1 40.0 43.4 46.8 1.37/0.94

FGR
(Good)

FastGR [23] 12.4 21.4 29.5 38.6 45.1 68.8◦/- 7.7 17.6 28.2 36.2 43.4 1.43/-
EIGSE3 (FGR) [2] 1.5 4.3 12.1 34.5 47.7 68.1◦/- 1.2 4.1 14.7 32.6 46.0 1.29/-
L2Sync (FGR) [16] 34.4 41.1 49.0 58.9 62.3 42.9◦/- 2.0 7.3 22.3 36.9 48.1 1.16/-

Ours
(Good)

EIGSE3 [2] 63.3 70.2 75.6 80.5 81.6 23.0◦/1.7◦ 42.2 58.5 69.8 76.9 79.7 0.45/0.06
Ours (1st iter.) 57.7 65.5 71.3 76.5 78.1 28.3◦/1.9◦ 44.8 60.3 69.6 73.1 75.5 0.57/0.06
Ours (4th iter.) 60.6 68.3 73.7 78.9 81.0 24.2◦/1.8◦ 47.1 63.3 72.2 76.2 78.7 0.50/0.05
Ours (After Sync) 65.8 72.8 77.6 81.9 83.2 20.3◦/1.6◦ 48.4 67.2 76.5 79.7 82.0 0.42/0.05

Table 1. Multiview registration evaluation on ScanNet [8] dataset. We report the ECDF values for rotation and translation errors. Best
results are shown in bold.

Differentiable transformation synchronization The
global transformation parameters can be estimated either
jointly (transformation synchronization) [14, 3, 2, 6] or by
dividing the problem into rotation synchronization [1]

R∗i = argmin
Ri∈SO(3)

∑
(i,j)∈E

cij ||R̂ij −RiR
T
j ||2F (4)

and translation synchronization [15]

t∗i = argmin
ti

∑
(i,j)∈E

cij ||R̂ijti + t̂ij − tj ||2 (5)

where the weights cij represent the estimated confidence in
the relative transformation parameters. Both of these op-
timization problems admit differentiable closed form solu-
tions under spectral relaxation as follows [1, 15]. Consider
a symmetric matrix L ∈ R3NS×3NS resembling a block
Laplacian matrix, defined as

L =


I3
∑

i ci1 −c12R̂12 · · · −c1NS R̂1NS

−c21R̂21 I3
∑

i ci2 · · · −c2NS R̂2NS
...

. . .
...

−cNS1R̂NS1 −cNS2R̂NS2 · · · I3
∑

i ciNS


where NS denotes the number of nodes in the graph. The
least squares estimates of the global rotation matrices R∗i
are then given, under relaxed orthonormality and determi-
nant constraints, by the three eigenvectors vi ∈ R3NS

corresponding to the smallest eigenvalues of L. Conse-
quently, the nearest rotation matrices under Frobenius norm
can be obtained by a projection of the 3× 3 submatrices of
V = [v1,v2,v3] ∈ R3NS×3 onto SO(3) analogous to the
Kabsch algorithm in pairwise registration.

Similarly, the closed-form solution to the least squares
formulation of the translation synchronization can be writ-
ten as [16] t∗ = L+b where t∗ = [t∗

T

1 , . . . , t∗
T

NS
]T ∈

R3NS and b = [b∗
T

1 , . . . ,b∗
T

NS
]T ∈ R3NS with bi :=

−
∑

j∈N (i) cijR̂
T
ij t̂ij . whereN (i) denotes the neighboring

vertices of Si in G and + shows the pseudoinverse.

3. Experimental evaluation
Training The individual parts of the network are con-
nected into an end-to-end multiview 3D registration algo-
rithm as shown in Fig. 2. We pre-train the individual sub-
networks (training details available in [11]) before fine-
tuning the whole model in an end-to-end manner on the
3DMatch dataset [21] using the official train/test data split.

Multiview registration We evaluate the performance of
our approach on the task of multiview registration using the
ScanNet [8] dataset. To ensure a fair comparison, we fol-
low [16] and use the same 32 randomly sampled scenes for
evaluation. For each scene we randomly sample 30 RGBD
images that are 20 frames apart. The temporal sequence of
the frames is discarded. We compare our method to a SOTA
transformation synchronization [2], as well as the recent
learned approach [16]. We evaluate [2] with both, [23] and
our pairwise transformation estimates as input. ”Good” in
Tab. 1 denotes that the edges were punned according to [16]
before the transformation synchronization.

As shown in Tab. 1 our approach can achieve a large im-
provement on the multiview registration tasks compared to
the baselines. Not only our estimation of the initial pairwise
relative transformations estimated using are more accurate
than the ones of FGR [23], but they can also be further im-
proved in the subsequent iterations. This clearly confirms
the benefit of the feed-back loop of our algorithm. In Fig. 3,
a qualitative comparison of the global registration of scene
Hotel 1 from 3DMatch dataset is presented.

4. Conclusions
We have introduced an end-to-end learnable, global,

multiview point cloud registration algorithm. Our method
departs from the common two-stage approach and directly
learns to register all views in a globally consistent manner.
Experimental evaluation on benchmark datasets show that
our method outperforms SOTA by more than 25 percentage
points on average, considering the rotation error.
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Figure 3. Registration of multiple scans of the Hotel 1 scene from 3DMatch dataset. The superiority of our method over the state of the art
is also apparent when the outcome are qualitatively inspected.
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