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Figure 1. ∇SLAM (gradSLAM) is a fully differentiable dense simultaneous localization and mapping (SLAM) system. The central idea
of ∇SLAM is to construct a computational graph representing every operation in a dense SLAM system. We propose differentiable
alternatives to several non-differentiable components of traditional dense SLAM systems, such as optimization, odometry estimation,
raycasting, and map fusion. This creates a pathway for gradient-flow from 3D map elements to sensor observations (e.g., pixels). We
implement differentiable variants of three dense SLAM systems that operate on voxels, surfels, and pointclouds. ∇SLAM thus is a novel
paradigm to integrate representation learning approaches with classical SLAM.

Abstract

The question of “representation" is central in the context
of dense simultaneous localization and mapping (SLAM).
While learning-based approaches have the potential to
leverage downstream tasks to learn representations, blend-
ing such approaches with “classical" SLAM systems has
remained an open question. In this work, we propose
∇SLAM (gradSLAM), a methodology for posing SLAM
systems as differentiable computational graphs, which uni-
fies gradient-based learning and SLAM. We propose differ-
entiable trust-region optimizers, surface measurement and
fusion schemes, and raycasting, without sacrificing accu-
racy. This amalgamation of dense SLAM with computa-
tional graphs enables us to backprop all the way from 3D
maps to 2D pixels, opening up new possibilities in gradient-
based learning for SLAM. A short video explaining the pa-
per and showcasing the results can be found here.

1. Introduction

For decades, simulataneous localization and mapping
(SLAM) has been a central element of robot perception and
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state estimation. SLAM allows robots to operate in pre-
viously unseen environments, a core capability that robots
must possess for real-world deployment. A large portion
of the visual SLAM literature has focused either directly or
indirectly on the question of map representation [8, 10, 11].
This fundamental choice of representation dramatically im-
pacts the design of processing blocks in the SLAM pipeline,
as well as all other downstream tasks that depend on the out-
put of the SLAM system. In particular, for dense 3D maps
generated from RGB-D cameras, there has been a lack of
consensus on the right map representation.

Learning representations, as has been done in several
other domains is thus appealing for SLAM. However, it is
not straightforward because SLAM systems are composed
of several subsystems (tracking, mapping, global optimiza-
tion, etc.) many of which are not inherently differentiable.
In this paper, we argue for a declarative approach [7] and
propose∇SLAM (gradSLAM): a fully differentiable dense
SLAM system that harnesses the power of computational
graphs and automatic differentiation to enable learning of
dense geometric representations.

This also allows us to solve the inverse mapping problem
(i.e., answer the question: “How much does a specific pixel-
measurement contribute to the resulting 3D map"?) some-
thing that is not possible with other popular dense visual
SLAM systems [8,11,15]. The computational graph frame-
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work allows us to obtain a function (S) that relates a pixel in
an RGB-D image (or in general, any sensor measurement s)
to a 3D geometric mapM of the environment:M = S(s).
As a result, the gradient ∇sS tells us that perturbing the
sensor measurement s by an infinitesimal δs causes the map
M to change by∇sS(s)δs.

If an entire SLAM system can be composed from el-
ementary operations, all of which are differentiable, the
system allows end-to-end gradient propagation by con-
struction. However, modern dense SLAM systems are
quite sophisticated, with several non-differentiable subsys-
tems (optimizers, raycasting, surface mapping), that make
such a construction challenging. We show how all non-
differentiable functions in SLAM can be realised as smooth
mappings. In particular, we present differentiable versions
of nonlinear least squares optimization, raycasting, and ras-
terization, while maintaining commensurate accuracy with
the non-differentiable counterparts.

While there has been progress in deep learning based
SLAM systems [3], and declarative sub-components for
SLAM [2, 6], to the best of our knowledge, there is no sin-
gle approach that models the entire SLAM pipeline as a dif-
ferentiable model, and this is the motivation that underlies
∇SLAM.

We demonstrate ∇SLAM through 3 instantiations,
where our differentiable SLAM building blocks are used
to realize the following dense SLAM systems: implicit-
surface mapping (Kinectfusion [11]), surfel-based mapping
(PointFusion [8]), and iterative closest point (ICP) map-
ping (ICP-SLAM). We also demonstrate examples of back-
propagating error signals through the entire SLAM system
that enable exciting avenues in representation learning for
SLAM1.

2.∇SLAM
2.1. Overview of ∇SLAM

The objective of ∇SLAM is to make every computation
in SLAM exactly realised as a composition of differentiable
functions. Wherever exact differentiable realizations are not
possible, we desire as-exact-as-possible differentiable re-
alizations. Specifically, we propose differentiable alterna-
tives to trust-region optimization (Sec. 2.2), dense mapping
(Sec. 2.3)), measurement fusion and raycasting (Sec. 2.4).

2.2. ∇LM: A Differentiable Nonlinear Least
Squares Solver

Most state-of-the-art SLAM solutions optimize (min-
imize) nonlinear least squares objectives to obtain lo-
cal/globally consistent estimates of the robot state and the
map. Such objectives are of the form 1
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∑
r(x)2, where

r(x) is a nonlinear function of residuals.
1Project page: http://montrealrobotics.ca/gradSLAM/

Trust-region methods such as Levenbarg-Marquardt
(LM) are commonly used to optimize these objectives.
These methods are not differentiable as at each optimiza-
tion step, they involve recalibration of optimizer parame-
ters, based on a lookahead operation over subsequent iter-
ates [9]. Specifically, after a new iterate is computed, LM
solvers need to make a discrete decision between damping
or undamping the linear system. Furthermore, when un-
damping, the iterate must be restored to its previous value.
This discrete switching behavior of LM does not allow for
smooth gradients with respect to the optimizer hyperparam-
eters.

We propose a computationally efficient soft
reparametrization of the damping mechanism to en-
able differentiability in LM solvers. Our key insight is that,
if r0 = r(x0)

Tr(x0) is the (squared) norm of the error
at the current iterate, and r1 = r(x1)

Tr(x1) is the norm
of the error at the lookahead iterate, the value of r1 − r0
determines whether to damp or to undamp. And, only when
we choose to undamp, we revert to the current iterate. We
define two smooth gating functions Qx and Qλ based on
the generalized logistic function [12] to update the iterate
and determine the next damping coefficient.

λ1 = Qλ(r0, r1) = λmin +
λmax − λmin

1 +De−σ(r1−r0)

Qx(r0, r1) = x0 +
δx0

1 + e−(r1−r0)

(1)

where D and σ are tunable hyperparameters that control
the slope of the falloff function [12]. [λmin, λmax] is the
range of values the damping function can assume (usually,
λmin = 1

2 , λmax = 2, when using multiplicative damping
with a damping coefficient of 2). This smooth parameteriza-
tion of the LM update allows the optimizer to be expressed
as a fully differentiable computational graph (Fig. 1(b)).
∇LM allows differentiable realizations of several SLAM

components, such as dense visual odometry estimation [13]
(Fig. 1(a)), and Iterative Closest Point (ICP) alignment [1].

2.3. Differentiable Mapping

The mapping process in SLAM involves a number of
differentiable yet non-smooth operations (clipping, index-
ing, thresholding, new/old decision, active/inactive deci-
sion, etc.). We enforce differentiability in this process by
the following corrective measures.

1. The surface measurement made at each valid pixel p in
the live frame is a function of p and also active neigh-
bours of p, nbd(p) via a kernel K(p, nbd(p)).

2. When a surface measurement is transformed to the
global frame, we use soft (one-many) rather than hard
(one-one) associations.

3. Every surface measurement is, by default, assumed to
represent a new map element, which is passed to a dif-
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Figure 2. Qualitative results on sequences from the ScanNet [4]
dataset. We use each of the differentiable SLAM systems
(∇KinectFusion, ∇PointFusion, and ∇ICP-SLAM) to reconstruct
parts of the scene. We also show outputs from BundleFusion [5].

ferentiable fusion step (c.f . Sec 2.4).

The kernel K(p, nbd(p)) can be a discrete approxima-
tion (e.g., constant within a pixel) or can vary at the subpixel
level. For faster computation and coarse gradients, we use
a bilinear interpolation kernel. While bilinear interpolation
is a sensible approximation for image pixels, this is often
a poor choice for use in 3D soft associations. For forming
3D associations, we leverage characteristics of RGB-D sen-
sors in defining the soft falloff functions. Specifically, we
compute, for each point P in the live surface measurement,
a set of closest candidate points in a region exp

(
− r(P )2

2σ2

)
,

where r(P ) is the radial depth of the point from the cam-
era ray, and σ affects the falloff region. The computational
graph for this differentiable mapping process is illustrated
in Fig. 1(c).

2.4. Other differentiable modules

We also repurpose existing differentiable modules for
measurement fusion [8, 11] and raycasting [14].

3. Case Studies: KinectFusion, PointFusion,
and ICP-SLAM

As concrete demonstrations of∇SLAM, we leverage the
aforementioned differentiable SLAM subsystems and com-
pose them to realise three practical SLAM solutions. We
implement differentiable versions of the KinectFusion [11]
algorithm that constructs TSDF-based volumetric maps, the
PointFusion [8] algorithm that constructs surfel maps, and
a pointcloud-based SLAM framework that we call ICP-
SLAM. Fig. 2 shows qualitative reconstruction results on
sequences from ScanNet [4], and Table 1 shows that the
accuracy of these differentiable SLAM systems is similar
to their non-differentiable counterparts.

Method ATE RPE
ICP-Odometry (non-differentiable) 0.029 0.0318

∇ICP-Odometry 0.01664 0.0237
ICP-SLAM (non-differentiable) 0.0282 0.0294

∇ICP-SLAM 0.01660 0.0204
PointFusion (non-differentiable) 0.0071 0.0099

∇PointFusion 0.0072 0.0101
KinectFusion (non-differentiable) 0.013 0.019

∇KinectFusion 0.016 0.021

Table 1. Performance of∇SLAM compared to non-differentiable coun-
terparts (ATE: Absolute Trajectory Error, RPE: Relative Pose Error).

Metric LM ∇LM
Convergence iters 7.6± 3.4 7.4± 3.8
‖aopt − ainit‖1 0.011± 0.011 0.399± 0.162
‖bopt − binit‖1 0.331± 0.174 0.574± 0.137
‖copt − cinit‖1 0.114± 0.021 0.084± 0.032

Total error 0.184 0.207

Table 2. ∇LM performs quite similarly to its non-differentiable
counterpart. (Convergence tolerance 10−6)

Difference in gradients
Backprop

Compare

Compare
Backprop

Figure 3. Analysis of gradients: ∇SLAM enables gradients to
flow through to the input images. Top: An RGB-D image pair
(depth not shown) is passed through ∇KinectFusion. The result-
ing map is compared with a precise (ground-truth) map. The com-
parision error is backpropagated through the SLAM system, to the
depth map (blue colormap). Bottom: An occluder is added to the
center of the RGB-D pair. This occluder results in a gaping hole.
But, using the backpropagated gradients, one can identify the set
of image/depthmap pixels that result in the reconstruction error.

4. Experiments and results
4.1. Differentiable Optimization

We design a test suite of nonlinear curve fitting prob-
lems to measure the performance of ∇LM (Sec 2.2) to its
non-differentiable counterpart. We uniformly sample the
parameters p = a, b, c, with initial guess a0, b0, c0 from
the exponential family: p ∼ y = aexp(− (x−b)2

2c2 ). For
1000 sampled problem sets, we optimize using both LM
and ∇LM, and measure the following quantities: iterations
to converge, quality of the solution (i.e., discrepancy be-
tween estimated and true parameters). Notice from Table 2
how ∇LM performs similarly to LM (a slight performance
drop is noticeable, due to smoothing).

4.2. Analysis of Gradients

The computational graph approach of∇SLAM allows us
to recover meaningful gradients of 2D (or 2.5D) measure-
ments with respect to a 3D surface reconstruction. We pro-
vide an analysis of what these multi-view gradients corre-
late to in the input image and depth space. In Fig. 3, the top
row shows an RGB-D image differentiably transformed—
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Figure 4. End-to-end gradient propagation: (Top): A chunk of
a depth map is chopped. The resultant sequence is reconstructed
using ∇PointFusion and the pointcloud is compared to a clean one
reconstructed using the unmodified depth map. The Chamfer dis-
tance between these two pointclouds is used to define a reconstruc-
tion error between the two pointclouds, which is backpropagated
through to the input depth map and updated by gradient descent.
(Bottom): Similar to the Fig. 3, we show that ∇SLAM can fill-in
holes in the depthmap by leveraging multi-view gradient informa-
tion.

Figure 5. RGB-D completion using end-to-end gradient prop-
agation: Three RGB-D images and a noise image are passed
through ∇PointFusion, and compared to a clean reconstruction
obtained from four RGB-D images. The reconstruction loss is
used to optimize the noise image by gradient descent. We can
recover most of the artifacts from the raw RGB and depth images.
Note that finer features are hard to recover from a random initial-
ization, as the overall SLAM function is only locally differentiable.

using∇SLAM—into a (noisy) TSDF surface measurement,
and then compared to a more precise global TSDF map. The
bottom row is similarly transformed, with the difference be-
ing the presence of a small (40× 40 px) occluder. Element-
wise comparision of aligned volumes gives us a reconstruc-
tion error, whose gradients are backpropagated through to
the input depthmap using the computational graph main-
tained by∇SLAM. Inspecting the gradients with respect to
the input indicates the per pixel contribution of the occlud-
ing surface to the volumetric error. In Fig. 4, we similarly
introduce such occluders (top row) and pixel noise (bottom
row) in one of the depth maps of a sequence and recon-
struct the scene using ∇PointFusion. We then calculate the
Chamfer distance between the noisy and true surfel maps
and backpropogate the error with respect to each pixel. The
minimized loss leads to the targeted recovery of the noisy
and occluded regions. We additionally show an RGB-D im-
age completion task (from uniform noise) in Fig. 5.

Thus,∇SLAM provides a rich interpretation of the com-
puted gradients: they denote the contribution of each pixel
towards the eventual 3D reconstruction.

5. Conclusion
We introduce ∇SLAM, a declarative, computational

graph approach to SLAM.∇SLAM enables gradient-based
learning for localization and mapping based tasks by pro-
viding explicit gradients with respect to the input sensor
observations. We showcase how the gradients propogate
through the tracking, mapping, and fusion stages. Fu-
ture efforts will focus on learning ∇SLAM components to
optimize downstream task performance. ∇SLAM poten-
tially enables a variety of self-supervised learning appli-
cations, by equipping gradient-based learning architectures
with spatial understanding.
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