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Abstract

We present a new technique for the learning of continuous
energy functions that we refer to as Wibergian Learning.
One common approach to inverse problems is to cast them
as an energy minimisation problem, where the minimum cost
solution found is used as an estimator of hidden parameters.
Our new approach formally characterises the dependency
between weights that control the shape of the energy func-
tion, and the location of minima, by describing minima as
fixed points of optimisation methods. This allows for the
use of gradient-based end-to-end training to integrate deep-
learning and the classical inverse problem methods. We
show how our approach can be applied to obtain state-of-
the-art results in the diverse applications of tracker fusion
and multiview 3D reconstruction. The full paper can be
found in the NeurIPS2019 proceedings [14].

1. Introduction

Learning the ideal form of optimisation problems by dif-
ferentiating through the location of their minima has gained
much interest in recent years. One popular technique is im-
plicit differentiation, among many successful applications:
Lee et al. [9] and Finn et al. [4] use it for meta-learning.
Samuel et al. [11] make use implicit differentiation to train
continuous Markov Random Field Models, and Agrawal et
al. [1] use it to embed differentiable optimisation layers in
deep learning architectures. Amos and Kolter [2] make use
of implicit differentiation to formulate quadratic programs
solvers as a differentiable network layer, and Gould et al. [6]
use it to formulate Deep Declarative Networks (DDNs), a
deep learning model that embeds optimisation problems in
networks trained end-to-end. Additional examples can be
found in Wang et al. [15] and Gould et al. [5].

Despite its popularity, implicit differentiation can only
be used in a limited range of problems: for strongly convex
problems it is guaranteed to converge, but near flat minima

it can be unstable and may induce exploding gradients.
We show how implicit differentiation can be derived as

a fixed-point of the Newton-step algorithm. We propose
an alternative method, based on the trust-region algorithm,
that converges to the same fixed-points if the Newton-Step
also converges, but is more stable and works on a wider
range of problems. Our approach works for any continuous
optimisation algorithm, and only requires that the cost func-
tion is well-behaved (i.e. smooth) near the minima. We
provide a general overview of our approach and our exper-
imental results. A detailed derivation of our method and a
full description of the experiments can be found in [14].

2. Formulation
Given a minimiser y∗ of an arbitrary cost function

E(y;w, x), we seekw such that y∗ is optimal with respect to
some pre-existing loss function `(·) defined over the empiric
distribution of training data, i.e.

arg min
w

∑
x∈X

`(y∗(w);x) : y∗(w) := arg min
y

E(y ;w, x).

(1)
What makes this challenging is the decoupling of the losses
on the two sides of the equation; the ideal value of y∗ that
minimises the loss `(·) will not, in general, be the minimiser
of the energy E(·).

In light of this, we propose a novel local reparameteri-
sation of y∗ as a function of w, i.e. y∗(w), and show that
this allows us to compute dy∗/dw. This enables the effi-
cient learning of w using standard methods for stochastic
gradient descent and as part of an end-to-end learning frame-
work. This reparameterisation is reminiscent of the Wiberg
optimisation[16, 10], in which some variables are replaced
with the analytic formula for their minimum, hence the name
of our method. The key insight to our approach is that ifE(·)
is sufficiently smooth and well-behaved, the change in the
solution y∗(w)→ y∗(w′) caused by a small perturbation of
w → w′ is well approximated by a single step of either New-
ton’s method, or a more robust alternative, on y under the
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(a) Sum of RBF learnt with [11] (b) Sum of RBF learnt with our method (c) The evolution of the parameter σ2 for the
two methods

Figure 1. Learning the kernel width of a RanSaC-like function.

new function E(y ;w′, x), starting from the current solution
at y∗. Here we present a general outline of our results, while
a full derivation is contained in [14].

Given a local minimum y∗ of the following equation

y∗(w) = arg min
y

E(y ;w), (2)

we want to characterise how the location of the local mini-
mum varies with changes in w. We drop the dependency on
x for clarity of notation. Assuming the local neighbourhood
about y∗(w) is strongly convex, and that Newton’s method
given y∗(w) as an input will converge in a single iteration,
we can consider the second-order Taylor expansion around y.
Close to a minimum of E(·), the expansion well models the
function and the minimum of the two coincide. This leads to
Newton’s update rule

arg min
y′

E(y′ ;w) ≈ y − [HE(y ;w)]
−1∇E(y ;w). (3)

If we evaluate this at the minimum y = y∗(w), we have

y∗(w) = y∗(w)− [HE(y∗(w) ;w)]−1∇E(y∗(w) ;w), (4)

with∇E(y∗(w) ;w) = 0 at optimality.
For sufficiently small updates of w, y∗(w) remains in the

strongly convex region about the new minimum and one
iteration of Newton’s method moves y∗(w) directly towards
the new minimum y∗(w′). Writing w′ = w + ∆, as ∆→ 0
only a single iteration of Newton’s method is needed to get
arbitrarily close to the new minimum. That is,

y∗(w+∆) ≈ y∗(w)−[HE(y∗(w);w+∆)]−1∇E(y∗(w);w+∆).
(5)

Writing Hy∗(w) as shorthand for the Hessian of E(y ;w)
w.r.t. y at the fixed location y∗, i.e. HE(y∗;w), and∇y∗(w)
as shorthand for the Jacobian of E(y ;w) with respect to y
at y∗, i.e.∇E(y∗;w), we rearrange and normalise the above
equation.

In the limit ∆→ 0, and using∇y∗(w) = 0 by definition,
this allows us to derive

dy∗

dw
= −H−1y∗ (w)

∂∇y∗(w)

∂w
. (6)

Here we use the partial derivative to emphasise that the value
of y∗ on the right hand side of the equation comes from a
previous iteration of Newton’s method, and that it does not
vary with w.

Trust-Region Based Robustness

The last equation coincides with the update rule given by
implicit differentiation [11]. We can, however, see that if
the function descends sharply into a flat region about a local
minimum, where for all neighbourhoods, a quadratic approx-
imation is poor, the Hessian may tend to zero around the
minimum with H−1y∗ (w) ill-defined. Even if Hy∗(w) is non-
zero, it may become arbitrarily small leading to exploding
gradients. We eliminate this instability by replacing New-
ton’s step with the trust-region method that effectively adds
a positive correction to the diagonal of the Hessian. Given
λ ≥ 0 and I identity matrix, we obtain the gradient as

dy∗

dw

(d)

= −
(
Hy∗(w) + λI

)−1 ∂∇y∗(w)

∂w
. (7)

This can be interpreted as a damped variant of the Newton’s
method’s gradient, as equations and (6) and (7) are solutions
of the same quadratic programme, where (7) is subject to an
additional constraint that ||y||22 ≤ k, for some k.

Compared to the undamped formulation of (6), trust-
region methods converge to a true minimum for a strictly
larger class of functions making the new approach directly
applicable to a wider range of problems. Moreover, as
Hy∗(w) is positive semi-definite, and λI positive definite,

we have ||dy
∗

dw

(d)
|| ≤ λ−1||∂∇y∗(w)

∂w ||, and exploding gradi-
ents can no longer be created by a single layer.

This is not just a convenience; in our experiments, we
provide examples of a problem that fails to converge using
[11]; but our method gives state of the art results. In practice,
we fix λ = 0.1, with no additional tuning.

If the energy is quadratic, trust region analysis is un-
needed, however [11] may still fail to converge for ill-posed
quadratic problems. Analysis showing closed form updates



Figure 2. Learning the energy function for tracker fusion. Left:
Input image. Centre Left: Overlay of 72 tracker boxes (blue),
ground-truth detection (red) and our prediction (yellow). Centre
Right: Initial energy used to predict the top left corner of the box
locations before training. Right: Energy used to predict the same
corner of box locations after training (red indicates ground-truth).

for well- and ill-posed quadratic energies guaranteed to con-
verge are in the supplementary materials of [14].

Using the Derivative in Learning The derivatives we
have specified are quite general, and, importantly, they make
no assumptions about the energy minimisation technique
used to obtain the optimum. In practice, approximate sec-
ond order approaches such as L-BFGS [3] converge to a
neighbourhood about the minimum, but the solution found
does not satisfy the fixed point equation (4). In this case,
a single step of (trust-region) Newton’s method is required
for the numeric gradients and the analytic solution to coin-
cide. Given knowledge of how to compute the gradients,
energy minimisation can be treated as a component of any
end-to-end training network, which makes use of stochastic
subgradient descent, and integrated directly.

3. Experiments
RanSaC as an Illustrative Example We demonstrate our
approach on a simple 1-dimensional example. We consider
the problem of estimating the mean of a set of 10 inliers sam-
pled from a normal distribution N(U [−40, 40], 42) in the
presence of 100 outliers drawn from a broad uniform distribu-
tion U [−40, 40]. This can be formulated as an MLESaC [13]
type optimisation where the mean is estimated by minimis-
ing a one-dimensional sum of radial basis functions (RBF)
centred on the samples i.e.: µ̂ = arg mintE(t, x;σ) =∑

i− exp(−(xi − t)2/σ2). We compare our approach, and
that of [11], to find optimal value of σ to minimise the
squared error between the estimated mean and its true value.
For any choice of step-size and momentum, with probabil-
ity 1 we will eventually draw a set of points that have a
sufficiently small curvature about the minimum, causing an
arbitrarily large step for the undamped update of [11] while

Table 1. The VOT2018 challenge; ∗ = did not converge.

Frames Assigned at Random Sequences Assigned at Ran-
dom

Tracker IoU
DLSTpp 0.530
FSAN 0.490

SiamRPN 0.484
LSART 0.472

R_MCPF 0.465
Mean Fusion 0.238

Median Fusion 0.428
Samuel et al.[11] N/A ∗

Our Fusion 0.565

Tracker IoU
SA_Siam_R 0.4643

MBSiam 0.4624
SiamRPN 0.4621

FSAN 0.4618
LADCF 0.4601

Mean Fusion 0.2455
Median Fusion 0.4458

Samuel et al.[11] N/A ∗

Our Fusion 0.4960

our update remains bounded. This behaviour can be seen in
Figure 1.

Tracker Fusion Our approach can then be used to train a
model to fuse existing candidate trackers. This demonstra-
tion leverages the comprehensive evaluation work performed
by the Visual Object Tracking challenge team [8]. Starting
from the annotated ground-truth results and to their competi-
tion, we learn to fuse the tracking results all of 72 entries to
the competition on any given frame. Our task is to predict
the four corners of a bounding box given a set of candidate
locations from the other trackers. This is done by modelling
the upper and lower corner of the bounding boxes (see Fig-
ure 2) as a sum of 72 radial basis functions, whose standard
deviation and temporal based importance weights are learned
for each tracker.

In Table 1 we report the intersection over union measure
both for our approach, and for the top five methods from
the VOT2018 challenge on the same partitions. Our fused
tracker shows state of the art results on the highly competitive
VOT2018 challenge, while using implicit derivatives [11]
fails to converge.

Human Pose Estimation We also consider the problem
of 3D Human Pose Estimation from 2D detections. Given
the multi-camera model by Tome et al. [12], we use our
learning method to improve on their hand-tuned energy func-
tion, adapting over 6,000 hyper-parameters to a different
distribution of inputs.

Full details of the model and the training process can be
found in the original paper. Table 2 contains the results of
evaluating our approach on the Human3.6M data-set [7]. As
expected, evaluating the original model on the new data with-
out re-tuning the parameters results in worse performances
than the original ones; with our approach, we can adapt
the cost function to the new data, even outperforming the
original results.



Table 2. Average per joint 3D reconstruction error on Human3.6M, expressed in mm.
Multicamera Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Tome et al. [12] - L2 51.3 54.9 47.9 55.8 56.8 71.3 45.8 49.2 74.7 102.0 56.2 62.2 56.1 48.7 54.0 59.4
Tome et al. [12] - Huber 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8
Ours - Baseline 85.7 90.8 79.8 87.3 107.1 94.8 78.5 87.6 102.0 100.1 95.2 85.1 92.3 85.8 87.4 91.8
Ours - L2 38.5 44.3 39.2 42.1 61.9 44.4 36.0 38.6 56.7 65.6 50.6 41.0 47.7 45.3 46.6 47.7
Ours - Huber 38.2 42.2 39.5 39.1 57.2 45.2 34.1 39.1 57.8 68.0 48.7 39.1 46.7 40.5 41.1 46.1

Limitations: Much like implicit derivative based learning,
our approach inherits many of the advantages and disad-
vantages of gradient descent methods in neural nets. In
particular, just as vanishing gradients, and stuck neurons,
are a concern, it is possible for particular components of the
energy to have too narrow a range to influence the location
of minima; if this is the case, they will remain fixed. As such,
it is important to use sensible initialisations and regularisers
to ensure that, by default, components have a broad initial
range. In general, our modified update step is most important
at the start of the learning process, while the final energy
functions that our algorithm converges to tends to be better
behaved.

4. Conclusion

We have presented a novel approach that allows the clas-
sical energy minimisation methods of inverse problems to
benefit from the end-to-end training that has been a funda-
mental part of the success of deep-learning. By deriving
implicit differentiation as a fixed-point of the Newton-step
algorithm, we were able to create a more stable alternative to
implicit differentiation based upon trust-region methods. Ex-
periments based on RanSaC and tracker fusion show explicit
tasks in where our method works while implicit differentia-
tion fails to converge.

Code is available at: https://github.com/
MatteoT90/WibergianLearning.

References
[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen

Boyd, Steven Diamond, and J. Zico Kolter. Differentiable
convex optimization layers. In Advances in Neural Informa-
tion Processing Systems 32, pages 9562–9574. 2019.

[2] Brandon Amos and J. Zico Kolter. OptNet: Differentiable
optimization as a layer in neural networks. In Proceedings
of the 34th International Conference on Machine Learning
(ICML 2017), 2017.

[3] Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel.
Representations of quasi-newton matrices and their use in
limited memory methods. Mathematical Programming,
63(1):129–156, Jan 1994.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.

In Proceedings of the 34th International Conference on Ma-
chine Learning (ICML 2017), 2017.

[5] Stephen Gould, Basura Fernando, Anoop Cherian, Peter An-
derson, Rodrigo Santa Cruz, and Edison Guo. On differ-
entiating parameterized argmin and argmax problems with
application to bi-level optimization. CoRR, 2016.

[6] Stephen Gould, Richard Hartley, and Dylan Campbell. Deep
declarative networks: A new hope. Technical report, Aus-
tralian National University (arXiv:1909.04866), Sep 2019.

[7] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and predic-
tive methods for 3D human sensing in natural environments.
IEEE transactions on pattern analysis and machine intelli-
gence, 36(7):1325–1339, 2014.

[8] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg,
Roman Pfugfelder, Luka Cehovin Zajc, Tomas Vojir, Goutam
Bhat, Alan Lukezic, Abdelrahman Eldesokey, Gustavo Fer-
nandez, and et al. The sixth visual object tracking vot2018
challenge results, 2018.

[9] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex
optimization. CoRR, abs/1904.03758, 2019.

[10] Takayuki Okatani and Koichiro Deguchi. On the wiberg
algorithm for matrix factorization in the presence of miss-
ing components. International Journal of Computer Vision,
72(3):329–337, May 2007.

[11] Kegan G. G. Samuel and Marshall F. Tappen. Learning opti-
mized MAP estimates in continuously-valued MRF models.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 477–484, 2009.

[12] Denis Tome, Matteo Toso, Lourdes Agapito, and Chris Rus-
sell. Rethinking pose in 3D: Multi-stage refinement and re-
covery for markerless motion capture. In 2018 International
Conference on 3D Vision (3DV), pages 474–483. IEEE, 2018.

[13] P. H. S. Torr and A. Zisserman. MLESAC: A new robust esti-
mator with application to estimating image geometry. Com-
puter Vision and Image Understanding, 78:2000, 2000.

[14] Matteo Toso, Neill D. F. Campbell, and Chris Russell. Fixing
implicit derivatives: Trust-region based learning of contin-
uous energy functions. In Advances in Neural Information
Processing Systems 32, pages 1476–1486. 2019.

[15] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico
Kolter. Satnet: Bridging deep learning and logical rea-
soning using a differentiable satisfiability solver. CoRR,
abs/1905.12149, 2019.

[16] T. Wiberg. Computation of principal components when data
is missing. In Second Symp. Computational Statistics, pages
229–236, 1976.

https://github.com/MatteoT90/WibergianLearning
https://github.com/MatteoT90/WibergianLearning

	. Introduction
	. Formulation
	. Experiments
	. Conclusion

